

Modbus Interface Description

2-way EPIV Communicative characterised control valve with sensor-operated flow control

Edition 2023-12 / V3.08

Contents

Modbus general notes

	General information	
	Modbus RTU	
	Parametrisation	
	Register implementation	4
	Supported commands	
	Command "Read Discrete Inputs"	
	Interpret values in the registers	
	32-bit values in two registers	5
Modbus register overvi	ew	
	Operation, Service	6

Modbus register description

7-10

Modbus general notes

	-	
General information	Date	01.12.2023
	Product Name	2-way EPIV
	Actuator Type	EPR+MOD, EPF+MOD
	Protocol	Modbus RTU over RS-485
Modbus RTU	Transmission Formats Baud Rates	1-8-N-2, 1-8-N-1, 1-8-E-1, 1-8-O-1 (Default: 1-8-N-2) 9'600, 19'200, 38'400, 76'800, 115'200 Bd
		(Default: 38'400 Bd)
	Address	1247 (Default: 1)
	Number of Nodes	Max. 32 (without repeater)
	Terminating Resistor	120 Ω (Default: Off)
Parametrisation	Tool	ZTH EU
Quick addressing		g via the "Address" and "Adaption" buttons. e product datasheet (chapter Service).
Register implementation	(Address). No distinction is made Input Registers and Holding Registers	l addressed by 1n (Register No.) or 0n-1 between data types (Discrete Inputs, Coils, sters). As a consequence, all data can be s for Holding Register. The commands for can be used as an alternative.
Supported commands	Standard commands: Read Holding Registers [3] Write Single Register [6]	Optional commands: Read Discrete Inputs [2] Read Input Registers [4] Write Multiple Registers [16]
Command "Read Discrete Inputs"	The command reads one or more b No. 105 (Malfunction and Service Ir	its and can alternatively be used for Register nformation).
	Example:	
	The start address to be used is 166	4 -> 104 (Register Address) * 16 (Bit) = 1664
Interpret values in the registers	All values in the register are unsigne	ed integer data types.
	Example:	
	Read (Function 03, 1 Register) Value Register No. x = 0001 1010 1100 1000 ₂ = 6,856 ₁₀	
	Actual value = value * scaling factor * unit = 6,856 * 0.01 * unit = 68.56 unit	

32-bit values in two registers

Values that exceed 65,535 are stored in two consecutive Registers and have to be interpreted as "little endian" / LSW (Least Significant Word) first.

Example:

Register No. x (Value LowWord)	Re
= 14,551 ₁₀	= '
= 0011 1000 1101 0111 ₂	= (

Register No. x+1 (Value HighWord) = 19₁₀ = 0000 0000 0001 0011₂

Value LowWord	Value HighWord
= 14,551	= 19
= 0011 1000 1101 0111 ₂	= 0000 0000 0001 0011 ₂

32-bit value

= 0000 0000 0001 0011 0011 1000 1101 0111₂

- = 1,259,735₁₀
- = 1,259.735 unit

Math formula:

```
32-bit value = (Value HighWord * 65,536) + Value LowWord
32-bit value = (19 * 65,536) + 14,551
= 1,259,735
= 1,259.735 unit
```

Deactivated registers

If a register is not supported by a device or by a device setting, this is indicated by 65,535 (1111 1111 1111 1111₂).

Modbus register overview

Operation

-		
50	P\/I	~~
SE	rvi	CE.

•	Address	Register		Access
	0	Setpoint [%]		R/W
	1	Override Control		R/W
	2	Command		R/W
	3	Actuator Type		R
	4	Relative Position [%]		R
	5	Absolute Position [°] [mm]		R
	6	Relative Flow [%]		R
	7	Absolute Flow [I/min]		R
	8	Sensor Value 1 [mV] [–]		R
	9	_		_
	10		LowWord	- D
	11	Absolute Flow in unit selected	HighWord	— R
	12	Analog Setpoint [%]		R
	11	Absolute Flow in unit selected Analog Setpoint [%]		

No.	Address	Register		Access
100	99	Bus Termination		R
101	100	Series Number 1 st part		
102	101	Series Number 2 nd part		R
103	102	Series Number 4 th part		
104	103	Firmware Version		R
105	104	Malfunction and Service Information		R
106	105			
107	106	Max [%]		R/W
108	107	Sensor Type 1		R/W
109	108	Bus Fail Position		R / W
110	109	Communication Watchdog		R / W
111	110	Nominal Flow [l/min]		R
112	111			
113	112	Nominal Flow in Unit Selected	LowWord	— R
114	113		HighWord	
115	114			
116	115			
117	116	Control Mode		R/W
118	117	Unit Selection Flow		R/W
119	118	Setpoint Source		R / W
190	189	Fail-Safe Bridging Time		R / W
191	190	Fail-Safe Position		R/W

All writeable registers >100 are persistent and are ${\it not}$ supposed to be written on a regular basis.

Modbus register description

	Description Comment	Range, enumeration	Unit	Scaling	Access
0	Setpoint Setpoint for actuator between 0 and Max (Register No. 107)	010'000 Default: 0	%	0.01	R/W
1	Override control Overrides setpoint with defined values. Use of Fast open / Fast close: Fast open and Fast close cycles lead to increased mechanical load. Usage should be limited to certain time-critical events (e.g. frost protection).	0: None 1: Open 2: Close 3: Min 4: Mid 5: Max 6: Fast open 7: Fast close Default: None(0)		_	R / W
2	Command Initiation of actuator functions for service and test. After command is sent, register returns to None(0). With Reset(4), all malfunction and service information (Register No. 105) can be reset.	0: None 1: Adaption 2: Test 3: Sync 4: Reset Default: None(0)	-	-	R / W
3	Actuator type	0: Actuator not connected 1: Air / water 2: VAV / EPIV 3: Fire 4: Energy Valve 5: 6-way EPIV	_	_	R
4	Relative position	010'000	%	0.01	R
5	Absolute position	0max. angle	0	1	R
6	Relative flow Relative flow of V' _{nom}	010'000	%	0.01	R
7	Absolute flow	0V' _{nom}	l/min	1	R
8	Sensor 1 Value Current value of sensor 1, depending on the setting of the sensor 1 type (Register No. 108) [mV] if sensor 1 type (Register No. 108) is Active(1) [0 / 1] if sensor 1 type (Register No. 108) is Switch(4)	065'535	mV _	1 0 / 1	R
9	-	_	-	_	_
10	Absolute flow Absolute flow in unit selected (Register No. 118) LowWord Lower 16 bit of 32-bit value	-	UnitSel	0.001	R
11	Absolute flow Absolute flow in unit selected (Register No. 118) HighWord Upper 16 bit of 32-bit value				
12	Analog setpoint Shows the setpoint in % if actuator is controlled by analog signal.	010'000	%	0.01	R
	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 11 \\ 1 \end{array} $	Setpoint for actuator between 0 and Max (Register No. 107) 1 Override control Overrides setpoint with defined values. Use of Fast open and Fast close cycles lead to increased mechanical load. Usage should be limited to certain time-critical events (e.g. frost protection). 2 Command Initiation of actuator functions for service and test. After command is sent, register returns to None(0). With Reset(4), all malfunction and service information (Register No. 105) can be reset. 3 Actuator type 4 Relative position 5 Absolute position 6 Relative flow Relative flow do of Vinom 7 Absolute flow Current value of sensor 1, depending on the setting of the sensor 1 type (Register No. 108) is Active(1) [0 / 1] if sensor 1 type (Register No. 108) is Switch(4) 9 - 10 Absolute flow Absolute flow Absolute flow in unit selected (Register No. 118) LowWord Lower 16 bit of 32-bit value 11 Absolute flow Absolute flow in unit selected (Register No. 118) HighWord Upper 16 bit of 32-bit value 11 Absolute flow Absolute flow in unit selected (Register No. 118) HighWord Upper 16 bit of 32-bit value	Setpoint for actuator between 0 and Max (Register No. 107) Default: 0 1 Override control Overrides setpoint with defined values. Use of Fast open / Fast close: Fast open and Fast close cycles lead to increased mechanical load. Usage should be limited to certain time-critical events (e.g. frost protection). 0: None 1: Open 4: Mid 5: Max 6: Fast open 7: Fast close Default: None(0) 2 Command Initiation of actuator functions for service and test. After command is sent, register returns to None(0). With Reset(4), all malfunction and service information (Register No. 105) can be reset. 0: None 1: Adaption 2: Test 3: Sync 4: Reset Default: None(0) 3 Actuator type 0: Actuator not connected 1: Air / water 2: VAV / EPIV 3: Fire 4: Energy Valve 5: 6-way EPIV 3: Strine 4: Sensor 1 Value Current value of sensor 1, depending on the setting of the sensor 1 type (Register No. 108) is Active(1) [0 / 1] if sensor 1 type (Register No. 108) is Switch(4) 065'535 9 - - 10 Absolute flow Absolute flow in unit selected (Register No. 118) LowWord Lower 16 bit of 32-bit value - 11 Absolute flow Absolute flow in unit selected (Register No. 118) HighWord Upper 16 bit of 32-bit value 010'000 12 Analog setpoint Shows the setpoint in % if actuator is controlled by 010'000	Setpoint for actuator between 0 and Max (Register No. 107) Default: 0 1 Overrides setpoint with defined values. Use of Fast open AT Fast close: Fast open and Fast close cycles lead to increased mechanical load. Usage should be limited to certain time-critical events (e.g. frost protection). 0: None - 2 Command Initiation of actuator functions for service and test. After command is sent, register returns to None(0). With Reset(4), all malfunction and service information (Register No. 105) can be reset. 0: None - 3 Actuator type 0: Actuator not connected - - 4 Relative flow Relative flow of V'nom 010'000 % 5 Absolute flow (Current value of sensor 1, depending on the setting of the sensor 1 type (Register No. 108) [MV] if sensor 1 type (Register No.	Setpoint for actuator between 0 and Max (Register No. 107) Default: 0 1 Override control Overrides setpoint with defined values. Use of Fast open / Fast close: Fast open and Fast close cycles lead to increased mechanical load. Usage should be limited to certain time-critical events (e.g. frost protection). 0: None Fast open 7: Fast close Default: None(0) - 2 Command Initiation of actuator functions for service and test. After command is sent, register returns to None(0). With Reset(4), all maffunction and service information (Register No. 105) can be reset. 0: None 1: Adaption 2: Test Signo - - 3 Actuator type 0: Actuator not connected 1: Air/ water 2: W// EPIV 3: Fire 2: W// EPIV 3: Fire 4: Energy Valve 5: 6-way EPIV - - 4 Relative position 010000 % 0.01 5 Absolute position 0When - 001000 7 Absolute position 001000 % 0.01 8 Sensor 1 Value Current value of sensor 1, depending on the setting of the sensor 1 type (Register No. 108) is Active(1) [0 / 1] if sensor 1 type (Register No. 108) is Switch(4) - - - 9 - - - - - - 10 Absolute flow Absolute flow in unit selected (Register

No.	Address	Description Comment	Range, enumeration	Unit	Scaling	Access
100	99	Bus termination Indicates if bus termination (120 Ω) is enabled. Bus termination can be set with the configuration tools.	0: Inactive 1: Active Default: Inactive(0)	_	_	R
101	100	Series number 1 st part Each device has an unambiguous series number, which is either impressed on or glued to the housing. The series number consists of 4 segments, although only parts 1, 2 and 4 are displayed on Modbus. Example: 00839-31324-064-008 1 st part: 00839 2 nd part: 31324 4 th part: 008	-	-	_	R
102	101	Series number 2 nd part	_	_	_	R
103	102	Series number 4 th part	_	_	_	R
104	103	Firmware version Firmware version of communication module Example: 302, Version 3.02	-	-	_	R
	104	 Malfunction and service information Value is bit-coded. More than one bit can be set to 1. Not all bits mentioned in the enumeration are used for this actuator range. 1: Mechanical travel increased: The actuator has been moved outside the adapted working range. 2: Actuator cannot move: Mechanical overload, e.g. blocked actuator, etc. 8: Internal activity: Actuator performs a test run, adaptation, etc. 9: Gear train disengaged: The manual override button is pressed. 10: Bus Watchdog triggered: Timeout for the Bus Watchdog expired. 	Bitmask = Bit0: - Bit1: Mechanical travel increased Bit2: Actuator cannot move Bit3: - Bit4: - Bit5: - Bit6: - Bit7: - Bit8: Internal activity Bit9: Gear train disengaged Bit10: Bus Watchdog triggered Bit11: - Bit12: - Bit13: - Bit14: - Bit15: -	-	_	R
106	105	-	-	-	-	-
107	106	Max / V' _{max} Max has to be ≥30%. Max/V' _{max} applies to PosCtrl and FlowCtrl	3'00010'000 Default: 10'000	%	0.01	R / W
108	107	Sensor 1 type If setpoint source (Register No. 119) is Analog (hybrid mode), the sensor type 1 can be set to Active(1) in order to see the analog setpoint in mV. Note: After changing the sensor type, it might be necessary to restart the actuator in order for correct sensor values to be read out. For setting "4: Switch" it is mandatory that the analog control signal is parametrised to 210 V.	0: None 1: Active / Hybrid 2: - 3: - 4: Switch Default: None(0)	_	_	R / W

No.	Address	Description Comment	Range, enumeration	Unit	Scaling	Access
109	108	Bus fail position Modbus communication is not monitored by default. In the event of a breakdown in communication, the actuator retains the current setpoint. The bus implementation tracks the Modbus communication. If neither the setpoint (Register No. 1) nor the override control (Register No. 2) is renewed before the timeout for Bus Watchdog (Register No. 110) expires, the actuator moves to the bus fail position. Triggered bus watchdog is indicated in the malfunction and service information (Register No. 105). In hybrid mode (SpSource (Register No. 119) = Analog), bus monitoring is not activated.	0: None / last setpoint 1: Fast close 2: Fast open 3: Mid position (parametrised) Default: None(0)		_	R / W
110	109	Timeout for Bus Watchdog in s Time until bus fail will be detected. If Bus Watchdog = 0 then deactivated If bus fail position (Register No. 109) different from 0, the Bus fail position becomes active after the timeout for Bus Watchdog has expired.	03'600 Default: 0 If Bus fail position (Register No. 109) not None(0), then Default: 120	S	1	R / W
111		Nominal flow		l/min	1	 R
112	111	-		-	-	_
113	112	Nominal flow V' _{nom} in unit selected (Register No. 118) LowWord Lower 16 bit of 32-bit value	-	UnitSel	0.001	R
114	113	Nominal flow V' _{nom} in unit selected (Register No. 118) HighWord Upper 16 bit of 32-bit value	-			
115	114	-	_	_	_	_
116	115	-		_	_	_
117	116	Control mode	0: Position control 1: Flow control Default: Flow control (1)	-	_	R/W
118	117	Unit selection flow	0: m ³ /s 1: m ³ /h 2: l/s 3: l/min 4: l/h		_	R / W

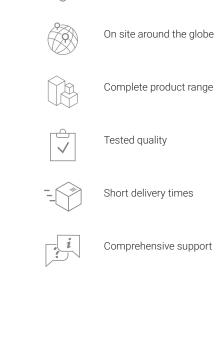
			6: cfm Default: I/min(3)		
119	118	Setpoint source	0: Analog	 _	R / W
		Analog: Setpoint from analog signal 010 V on wire 3	1: Bus		
		Bus: Setpoint from Modbus (Register No. 1)	Default: Bus(1)		

5: gpm

No.	Address	Description Comment	Range, enumeration	Unit	Scaling	Access
190	189	Fail-safe bridging time In the event of a power failure, the actuator will remain stationary in accordance with the set bridging time.	010	S	1	R / W
		Only for electronic fail-safe actuators				
191	190	Fail-safe position In the event of a power failure, the actuator will move into the selected fail-safe position, taking into account the bridging time that has been set.	010'000	%	0.01	R / W
		The rotary knob must be set to "Tool" position.				
		Only for electronic fail-safe actuators				

BELIMO Automation AG Brunnenbachstrasse 1, 8340 Hinwil, Switzerland +41 43 843 61 11, info@belimo.ch, www.belimo.com

EN - 2023-12/A - Subject to technical modifications


All inclusive.

Belimo as a global market leader develops innovative solutions for the controlling of heating, ventilation and air-conditioning systems. Damper actuators, control valves, sensors and meters represent our core business.

Always focusing on customer value, we deliver more than only products. We offer you the complete product range for the regulation and control of HVAC systems from a single source. At the same time, we rely on tested Swiss quality with a five-year warranty. Our worldwide representatives in over 80 countries guarantee short delivery times and comprehensive support through the entire product life. Belimo does indeed include everything.

The "small" Belimo devices have a big impact on comfort, energy efficiency, safety, installation and maintenance.

In short: Small devices, big impact.

5-year warranty

5

