

Válvula de asiento (alivio parcial de la presión), 2 vías, Bridas, PN 16

- Para sistemas cerrados de vapor y agua caliente (a alta temperatura) en el rango no crítico
- Para control proporcional en sistemas de tratamiento de aire y de calefacción en la parte de agua.

Índice de modelo	os .					
Modelo	DN	Kvs [m³/h]	Carrera nominal	PN	n(gl)	Sv min.
H640SP	40	25	15 mm	16	3	100
H650SP	50	40	15 mm	16	3	100
H664SP	65	58	18 mm	16	3	100
H679SP	80	90	18 mm	16	3	100
H6100SP	100	145	30 mm	16	3	100
H6125SP	125	220	40 mm	16	3	100
H6150SP	150	320	40 mm	16	3	100

Datos técnicos

D-4	-1-	£	- :		
Datos	Пe	TUIN	וכוחו	nam	iento

Materiales

Fluido	Agua caliente y vapor (Δp/P1 <0.4), con hasta un máx. de 50% de glicol en volumen					
Temperatura del fluido	5150°C [41302°F]					
Nota sobre temperatura del fluido	120 °C hasta 1600 kPa 150 °C hasta 1400 kPa					
Característica de caudal	isoporcentual (VDI/VDE 2173), optimizado en el rango de apertura					
Tasa de fuga	máx. 0.05% del valor Kvs					
Punto de cierre	Inferior (▼)					
Conexión a tubería	Bridas según ISO 7005-2					
Orientación de instalación	hacia arriba a horizontal (con respecto al vástago)					
Mantenimiento	sin mantenimiento					
Cuerpo de la válvula	EN-GJL-250 (GG 25)					
Acabado del cuerpo	Con pintura protectora					
Elemento de cierre	Acero inoxidable					
Eje	Acero inoxidable					
Sello del eje	Aro en V de PTFE					
Asiento	Acero inoxidable					

Notas de seguridad

- La válvula ha sido diseñada para su uso en sistemas estacionarios de calefacción, ventilación
 y aire acondicionado y no debe utilizarse fuera del campo específico de aplicación,
 especialmente en aviones o en cualquier otro tipo de transporte aéreo.
- Sólo especialistas autorizados deben realizar la instalación. Cualquier regulación legal al respecto debe ser tenida en cuenta durante la instalación.
- La válvula no contiene ninguna pieza que pueda reparar o sustituir el usuario.
- No se puede desechar la válvula con el resto de residuos domésticos. Deben tenerse en cuenta todas las normas y requerimientos locales vigentes.
- A la hora de determinar el coeficiente de caudal de los dispositivos controlados, es necesario acatar las directivas establecidas al respecto.

Características del producto

Modo de funcionamiento

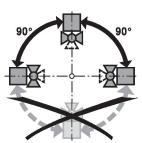
La válvula de asiento se mueve mediante un actuador para válvulas de asiento. Los actuadores se controlan mediante un sistema de control proporcional o a 3 puntos disponible en el mercado y accionan la bola de la válvula, que actúa como dispositivo de mezcla, hasta la posición de apertura indicada por la señal de control. Son admisibles presiones de cierre elevadas como resultado de los canales de desbordamiento y el vástago de alivio parcial de la presión en la válvula.

Característica de caudal

El perfil de la bola de la válvula produce una característica de caudal isoporcentual.

Velocidad de fluido

Los valores estándar para un funcionamiento con poco ruido en los sistemas de CVAA son velocidades medias de 1...2 m/s. A velocidades del fluido superiores a 2 m/s, pueden producirse otros efectos de caudal y cavitación. En función del lugar, esto puede reducir la vida útil de la válvula.


Accesorios

Accesorios eléctricos	Descripción	Modelo
	Calentador de ejes para LV, NV, SV, AC/DC 24 V, 30 W	ZH24-1-A

Notas de instalación

Orientación de instalación permisible

La válvula de asiento se puede instalar en horizontal hacia arriba. No está permitido montar las válvulas de asiento con el vástago hacia abajo.

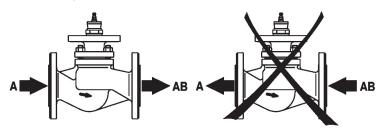
Requisitos de calidad del agua

Deben respetarse los requisitos de calidad del agua especificados en la VDI 2035.

Las válvulas de Belimo son dispositivos de regulación. Para que sigan funcionando correctamente a largo plazo, deben mantenerse sin residuos (p.ej., gotas de soldadura durante la instalación). Se recomienda la instalación de un filtro adecuado.

Notas de instalación

Mantenimiento


Las válvulas de asiento y los actuadores para válvulas de asiento son componentes que no necesitan mantenimiento.

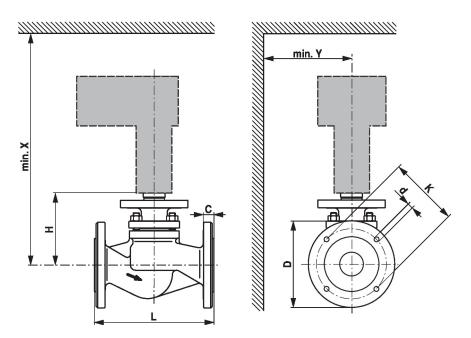
Antes de realizar cualquier trabajo de mantenimiento en el elemento de control, es esencial aislar el actuador para válvulas de asiento de la alimentación (desconectando el cableado eléctrico si fuera necesario). También se deberán apagar todas las bombas situadas en el circuito de tuberías que corresponda y cerrar las válvulas de sector adecuadas (de ser necesario, deje que todos los componentes se enfríen primero y reduzca siempre la presión del sistema hasta la atmosférica).

El sistema no se debe volver a poner en servicio hasta que el actuador y la válvula de asiento se haya vuelto a montar correctamente conforme a las instrucciones y hasta que un profesional debidamente cualificado haya rellenado la tubería.

Sentido del flujo

Deberá respetarse el sentido del flujo que se especifica con una flecha en el cuerpo; de lo contrario, se podría dañar la válvula.

Presión diferencial y de cierre


La presión diferencial y de cierre máxima de las válvulas de asiento depende del actuador para válvulas de asiento montado. A fin de garantizar un funcionamiento óptimo y la máxima vida útil, no debe sobrepasarse la presión diferencial y de cierre máxima indicada en la tabla siquiente.

ps <1600 kPa (PN16) t= 5 120°C ps <1400 kPa (PN16) t= 121 150°C		NV. 100		SVA 1500N		AVKA 2000N		EVA 2500N		RVA 4500N	
A AB	DN	Δps [kPa]	Δpmax [kPa]	Δps [kPa]	Δpmax [kPa]	Δps [kPa]	Δpmax [kPa]	Δps [kPa]	Δpmax [kPa]	Δps [kPa]	Δpmax [kPa]
H640SP	40	1600	1000	1600	1000						
H650SP	50	1600	1000	1600	1000						
H664SP	65	1600	1000	1600	1000						
H679SP	80	1600	1000	1600	1000						
H6100SP	100					600	600	600	600	600	600
H6125SP	125							600	600	600	600
H6150SP	150							600	600	600	600

Dimensiones

Dimensiones

X/Y: mínima distancia con respecto al centro de la válvula. Las dimensiones del actuador pueden encontrarse en la ficha de datos del actuador correspondiente.

Туре	DN	L	Н	C	D	d	K	X	Υ	മ
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	/ kg \
H640SP	40	200	136	18	150	4 x 18	110	390	100	9.6
H650SP	50	230	142	20	165	4 x 18	125	390	100	12
H664SP	65	290	155	20	185	4 x 18	145	400	100	18
H679SP	80	310	173	22	200	8 x 18	160	420	150	23
H6100SP	100	350	193	24	220	8 x 18	180	540	150	36
H6125SP	125	400	245	26	250	8 x 18	210	600	150	47
H6150SP	150	480	306	26	285	8 x 22	240	660	150	65

Documentación complementaria

- La gama de productos completa para aplicaciones de agua
- Fichas de datos para actuadores para válvulas de asiento
- Instrucciones de instalación para válvulas o actuadores para válvulas de asiento
- Notas para la planificación de proyectos para válvulas de asiento de 2 y 3 vías