

Introduction to Characterized Control Valves

Characterized Control Valve Applications

Control valves are suitable for use in a hydronic system with variable flow.

- Air handling units on heating or cooling coils
- Fan unit heating or cooling coils
- Unit ventilators
- VAV box re-heat coils and bypass loops

Characterized Control Valve (CCV) Technology

What is Ghost Energy?

 Leaky control valves increase the call for additional chilled water or heating water flows creating waste, which is called Ghost Energy.
 A 1% leakage creates a 5 to 10% energy loss.

Characterized Control Valve (CCV) Technology

 The characterizing disc defines the change in flow as the ball opens to create a flow characteristic that can be defined as an equal percentage flow curve.

Flow Configuration Equal Percentage Flow Characteristic

- The equal percentage flow characteristic of the valve is the inverse of the coil flow characteristic
- The combination of these two characteristic results in a linear output (relationship between ball opening and heat energy) which allows for a proportional response

Characterized Control Valve Selection Criteria

- Media Type (chilled/hot water or steam)
- Pattern (2-way, 3-way or 6-way)
- Valve Size (1/2" to 6")
- Piping reduction factor (Fp –if Applicable)
- Cv Range Coefficient of Flow
- Control Type (Open/Close, Floating Point, Modulating)

Media Types

Chilled or Hot Water

Steam

Valve Configurations

- 2-Way Isolation & Proportional
- 3-Way Mixing & Diverting/Switching
- 6-Way Dual Temp Systems

Cv - Piping Reduction Factor (Fp) Correction Factor

VALVE SIZE					LINE SIZE												
	Model #	Inches	DN [mm]	Cy Rating	1⁄2"		1"	1¼"	1½"	2"	2 ½"	3"	4"	5"	6"	8"	10"
CCV (Threaded)	B216*	1/2	15	16	16	9	7.2	6.6	-	-	-	-	-	-	-	-	-
	B221*	3/4	20	24	-	24	19	16	14.5	190	-	-	-	-	-	-	-
	B225*	1	25	30	-	-	30	27.4	24.8	22		-	-	-	-	-	-
	B230*	11/4	32	19			-	19	18.8	18.2	17.8	-	-	-	-		-
	B232*	11/4	32	37		-		37	35.5	31.8	29.9	-	=	-	-		
	B240*	11/2	40	37	+:	-	-		37	35.5	34	33	- 1	-	-	-	
	B250*	2	50	57				-		57	55.8	54.2	52.2	-	-	-	-
	B251	2	50	65		-	-			65	63.2	60.9	58.1				-
	B252	2	50	85	-	-		-	-	85	81.1	76.5	71.1	-	-	-	-
	B253	2	50	120	20 L			2	-	120	109.7	99	88.1			<u> </u>	1
	B254*	2	50	240	7		 	10	17	240	179.6	141.6	114.2	70			
	B261	21/2	65	60		-	-	-	-	(+) (60	59.6	58.3	57.5	-		-
	B262	21/2	65	75	21	2 D	<u>د</u>	j 4	14	043	75	74.2	71.8	70.4	-	<u> </u>	-
	B263	21/2	65	110	75				37	070	110	107.4	100.7	96.7	2		
	B264	21/2	65	150	-	-	-	-	-	-	150	143.6	128.6	120.6	-	-	-
	B265*	21/2	65	210			-	-	2	141	210	193.5	160.8	145.9	-	9	-
	B277	3	80	70	-	-	-	-	-			70	69.3	68.6	68.1		
	B278	3	80	130	-	-	-		-	-	-	130	125.8	121.5	118.8	-	-
	B280*	3	80	170	-	-		<u> </u>	-	340) -	-	170	161	152.3	147	<u> </u>	-
LGCCV (Flanged) ANSI 125	B6250S-070	21/2	65	70	π:	-	-		37	07.0	70	69.3	67.4	66.2	-	-	
	B6250S-110	21/2	65	110	-	-	-	-	-	-	110	107.4	100.7	96.7	-	-	-
	B6300S-110	3	80	110	-	2	-	2	-	122		110	107.4	104.7	103	-	1 2
	B6400S-186	4	100	186	- 1	-			-			-	186	183.3	179.8	175.1	
	B6500S-290	5	125	290	-	-	-			-	140	-	- 1	290	287	278.5	273.1
	B6600S-400	6	150	400		-	-	-	-	-	-	-	-	-	400	392.3	384
LGCCV (Flanged) ANSI 250	B6250S-070-250	21/2	65	70	-	-	-		-		70	69.3	67.4	66.2	-	-	-
	B6250S-110-250	21/2	65	110	-	-		-	-	-	110	107.4	100.7	96.7	-		-
	B6300S-110-250	3	80	110	-	-	-		-	27.0		110	107.4	104.7	103	-	-
	B6400S-186-250	4	100	186		-	-	-	-	-	-	-	186	183.3	179.8	175.1	-
	B6500S-290-250	5	125	290	2	2	1	2	1	1000	12	121	-	290	287	278.5	273.1
	B6600S-400-250	6	150	400	-	-	-	-	-		-	-	- 1	-	400	392.3	384

Values in chart are corrected Cv ratings for indicated pipe size

* Models without characterizing discs.

NOTE: Please use the corrected Cv values for the valves listed in the chart when installing them in pipes larger than the line size of the valve. All CCVs not listed do not require piping reduction factors. The values shown in bold are based on test data. All other values are calculated.

2-Way Operation

2 ports \rightarrow An inlet port (A) and an outlet port (AB)

Valve has a drilled hole through the middle \rightarrow When the hole is in line with the inlet and outlet ports, flow will occur.

To open valve and allow flow \rightarrow Ball is rotated (CCW)—the opening is in line with both A and AB ports

To close valve and stop flow \rightarrow Ball is rotated 90° (CW)—the opening is perpendicular to A and AB ports

2-Way Valve in Return Piping2 Position or Proportional Control

3-Way Mixing

3 ports \rightarrow Two inlet ports (A and B) and one outlet port (AB)

Rotate 90° (CCW) to resume flow from A to AB \rightarrow Cv is 100% to the coil

AB

3-Way Diverting

Have 3 ports \rightarrow One inlet port (AB) and two outlet ports (A and B)

Rotate 90° (CW) to allow flow from AB to B \rightarrow Cv is 70%

Rotate 90° (CCW) to resume flow from AB to A \rightarrow Cv is 100%

Stem Marking and Flow Direction

Stem markings show flow through the valve (A to AB flow shown)

Α

Flow arrows show mixing orientation 2 inlets, A and B, and one outlet, AB

Mixing 2 Inputs – 1 Output

Diverting 1 Input – 2 Outputs Coil Supply

Fail-safe actuators utilize an internal spring that drives the actuator open or closed on loss of power. **Non fail-safe actuators** stay in their current position on loss of power.

6-Way CCV

6-Way CCV Application

- Chilled beam systems
- Radiant ceiling panels
- Radiant heating/cooling applications

6-Way CCV

The 6-way CCV is a rotary valve similar to a CCV but with 2 control sequences.

- Sequence operating ranges
- Sequence¹: 0° to 30° rotation
- Closed position 30° to 60°
- Sequence²: 60° to 90°

6-Way CCV Operation

6-way CCV Operation

Typical Heating/Cooling Application Terminal Unit (4 pipe), 2-way Valves and 2 Coils

Pro

Two exchangers (1 coil for heating and 1 for cooling)

Con

- Cost exchanger (cost of 2 coils)
- Two control sequences
 - Cost of 2 control valves + cost of 2 actuators <u>+ cost of 2 points to control</u> = \$\$\$

BELIN

Typical Heating/Cooling Application Terminal Unit (4 pipe), (4) 2-way Valves and 1 Coils

Pro

Optimize exchanger (1 coil for heating and cooling)

Con

- Costs multiple valves (cost of 4 control valves)
- Two control sequences (cost of 2 control sequences and 4 actuators)

Typical Heating/Cooling Application Terminal Unit (4 pipe), (1) 6-way Valves and 1 Coils

Pro

- Optimize exchanger (1 coil for heating and cooling)
- Low installation cost 1 valve to install One control point need to sequence heating and cooling
- Unit cost of one valve

Further Questions or to Order

USA

33 Turner Road, Danbury, CT 06810 Tel. 800-543-9038 | Fax. 800-228-8283

1049 Fortunato Loop, Sparks, NV 89436

Canada

5845 Kennedy Road, Mississauga, Ontario L4Z 2G3 Tel. 866-805-7089 | Fax. 905-712-3124

Latin America and the Caribbean Tel. 203-791-8396 | Fax. 203-791-9139

Brazil

Rua Barbalha, 251, Alto da Lapa, São Paulo - CEP: 05083-020 Tel. 55 11 3643-5656 | Fax. 55 11 3643 5657

